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Abstract  

The Devonian-Carboniferous (D-C) transition (359 Ma) was a period of rapid global 

faunal changes in conjunction with global cooling and widespread ocean anoxia. The end-

Devonian mass extinction is one of the top 10 mass extinctions in Earth’s history, and the 

associated anoxia and regression is referred to as the Hangenberg Crisis. In many 

locations, the Hangenberg Crisis is characterized in the rock record by sandstone and black 

shale deposits. Little is known about the Hangenberg Crisis in Southeast Asia, however. 

Here we show that the Hangenberg Crisis is recorded within the Pho Han Formation on Cat 

Ba Island in northeastern Vietnam, and at the Hoshoot Shiveetiin Gol locality in the Hovd 

Province of southwest Mongolia.  

Preliminary work in July-August 2018 at the Hoshoot Shiveetiin Gol locality in 

Mongolia reveals that the Late Devonian shallow marine sequence is relatively continuous 

and encompasses the entire Late Devonian timescale, including both the Frasnian-

Famennian and Devonian-Carboniferous transitions. Although no black shale is present at 

the locality due to the location’s paleotopography, we interpret a pronounced arkosic 

sandstone layer to represent the Hangenberg regression event.  

In contrast, the Cat Ba Island section in Vietnam represents a sediment-starved 

basinal facies on the South China carbonate platform, where long-term dysoxic/anoxic 

conditions (as determined by trace element proxies, increased total organic carbon, and 

framboidal pyrite distributions) persisted. More severe anoxia (approaching euxinia) exists 

within the Hangenberg Crisis stratigraphic interval. Mercury (Hg) chemostratigraphy reveals 

a significant enrichment that corresponds to the Hangenberg Crisis and the D-C transition. 

The Hg is most likely sourced from volcanic emissions, potentially linking the end-Devonian 

anoxia and mass extinction to large-scale volcanic activity. This is a new and valuable 
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development that is supported by very recent studies in Uzbekistan and Germany and must 

be investigated further. As both sites represent the two end members of understudied 

paleoenvironments (compared to sites in Europe and North America, where overlapping 

signals can be difficult to interpret), they are critical to understanding Late Devonian anoxia 

and extinction events.  
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Preface 

This thesis is a product of the research I have completed over the past three years 

with the DAGGER (Devonian Anoxia, Geochemistry, Geochronology, and Extinction 

Research) research group. We are an international and interdisciplinary research team 

affiliated with the UNESCO International Geoscience Programme’s (IGCP) Projects 580, 

596, and 652. Our team primarily studies two stages of Late Devonian ocean anoxia and 

mass extinction events: the Frasnian-Famennian extinction (372 Ma) which corresponds to 

the Kellwasser anoxia event, and the Devonian-Carboniferous extinction (359 Ma) which 

corresponds to the Hangenberg anoxia event/crisis. These extinction events are collectively 

called the Late Devonian mass extinction, which is one of the “big five” mass extinctions in 

Earth history (Raup and Sepkoski, 1982; McGhee, 2013), but it is arguably the least 

understood of them. Unlike the other massive extinction events, no single trigger is 

apparent, and our understanding of Late Devonian anoxia events is limited by concentrated 

study locations in North America and Europe (which were geographically adjacent during 

the Devonian as Pangaea was forming). The depositional histories at these sites that were 

situated on the Euramerican continent are complicated by the building and shedding of the 

Appalachian Mountains during the Variscan/Appalachian orogeny. For this reason, the 

DAGGER team studies unique and underrepresented paleogeographic locations that are 

independent of this orogenic event. My thesis incorporates research from two locations in 

Asia, where relatively little is known about the Late Devonian anoxia and extinction events 

(Fig. P-1). These two locations represent endmembers in terms of depositional settings: the 

first being an open ocean island arc complex, and the second representing a restricted 

basin not being affected by mountain building/shedding that often overprints true ocean 

anoxia signatures. The lithologies that define the Hangenberg Crisis in these locations are 
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very different when compared to the type section in Germany, which preserves a very 

specific and unusual paleoenvironment.  

Part I of my thesis is based on 2018 fieldwork in the Khovd Province of Mongolia. 

Previous fieldwork in 2012 and 2014 was completed by DAGGER members. The field site of 

particular interest to this study is called Hoshoot Giveetiin Gol, which contains Late 

Devonian stratigraphy that records the events associated with both the Frasnian-Famennian 

and Devonian-Carboniferous boundaries. My job in the field was to make a geologic map of 

the site in order to assess the usefulness of radiometric dating of a basalt flow, as well as to 

determine if the section is stratigraphically continuous in the area of interest. This will serve 

as a jumping off point for studies by future DAGGER members, who will use multi-proxy 

geochemical and lithological analyses, similar to those used in Part II of this thesis.  

Part II of this thesis focuses on a stratigraphic section at Cat Co Beach on Cat Ba 

Island in northeastern Vietnam. This section includes and expands upon my first-author 

manuscript that has been submitted to the journal Global and Planetary Change. The 

manuscript is entitled “The Devonian-Carboniferous boundary in Vietnam: sustained ocean 

anoxia with a volcanic trigger for the Hangenberg Crisis?” The purpose of this study was to 

investigate how the Hangenberg Crisis is recorded in a historically anoxic basin, both 

geochemically and lithologically. The lithologic section was described and analyzed for 

conodont biostratigraphy in Komatsu et al. (2014), and my study is a geochemical and 

mineralogical continuation of this work. I used geochemical, principle component, and 

framboidal pyrite analyses to locate and interpret the severity of the Hangenberg Crisis 

within the section. Investigating mercury chemostratigraphy allowed me to propose 

widespread volcanism as a potential trigger of the Hangenberg Crisis.  
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Preface Figure 

 

 
Figure P-1. Paleogeographic reconstruction of the continents during the Late Devonian with 
thesis study locations in red. Most Late Devonian study locations were within Euramerica 
during the Devonian. Figure modified from Blakey (2016), using updated paleogeographic 
data for Asia from Xiao et al. (2010) and Metcalfe (2009).  
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Part I 

MAPPING LATE DEVONIAN MASS EXTINCTIONS AND ANOXIA EVENTS AT THE 

HOSHOOT SHIVEETIIN GOL LOCALITY IN THE KHOVD PROVINCE OF MONGOLIA 

 

1. Introduction 

The discovery of anoxia indicators in the West Junggar island arc in northwest China 

(part of the Central Asian Orogenic Belt, or CAOB) was the first of its kind to demonstrate 

that late Devonian anoxia was global in scope and likely due to shallow water eutrophication 

(Carmichael et al., 2014, 2016). Carmichael et al. (2014, 2016) put forward a new 

mechanism for ocean anoxia that is climate-driven and can explain the global anoxia 

phenomena, contradicting the previous hypothesis of upwelling anoxic waters in shallow 

continental seas and shelf regions (Algeo et al., 2007; Caplan and Bustin, 1999; Caplan et 

al., 1996; Cramer et al., 2008; Formolo et al., 2014; Komatsu et al., 2014; Smith and Bustin, 

1998). Previous study locations are primarily located in North America, Northern Africa, and 

Europe, which were paleogeographically adjacent during the Late Devonian. Interpretations 

of sediment deposition in these locations are moderated by concurrent 

Appalachian/Variscan mountain building and shedding (Averbuch et al., 2005; Carmichael et 

al., in review).  

For example, the biostratigraphy defining the D-C boundary is based on the Global 

Stratotype Section and Point (GSSP) location La Serre Trench E’section at Montagne Noire, 

France, but there is debate whether these sediments are correlatable to other sections due 

to potential sediment reworking (Corradini et al., 2017; Spalletta et al., 2017). Conodont 

biostratigraphy is not the only issue when correlating D-C sediments to other 

paleogeographic locations; lithologies marking the Hangenberg Crisis are also widely varied. 
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Within epicontinental basins and continental margins, two lithologies record the event: (1) 

the Hangenberg black shale (HBS), and (2) the regressive Hangenberg sandstone (HSS) or 

unconformity, related to growth of continental ice sheets (Bábek et al., 2016; Cole et al., 

2015; Becker et al., 2016; Kaiser et al., 2015). However, the same lithologic and taxonomic 

trends are difficult if not impossible to compare to independent paleoenvironmental settings, 

such as an open ocean island arc complex like the one presented here (Suttner et al., 2018 

(accepted)) or in China (Carmichael et al, 2016). For this reason, new study sites entirely 

independent of previous study locations are necessary to test the hypothesis put forward in 

Carmichael et al. (2016). 

A new location to test this hypothesis was found when an expedition to southwestern 

Mongolia in 2012 suffered an accident when one of the vans in the caravan flipped onto its 

side while backing down a road. Part of the crew explored the outcrops in the area while the 

van was righted and fixed; they discovered an excellently-preserved, relatively continuous 

Late Devonian shallow marine sequence in the meantime (Kido et al., 2013). This locale is 

called Hoshoot Shiveetiin Gol, which was deposited within the East Junggar arc in the 

CAOB. The group returned in 2014 for additional sampling for biostratigraphy and sampling 

for zircon geochronology (Thomas et al., 2017). Preliminary biostratigraphy shows the site to 

be Famennian in age (Suttner et al, in revision), but little else was known before our field 

expedition in summer 2018. Additional sampling and geologic mapping were necessary to 

find evidence of ocean anoxia events and constrain the stratigraphic location of the 

Frasnian-Famennian (F-F) transition and look for the Devonian-Carboniferous (D-C) 

boundary. 

In 2014, the basaltic/andesitic lava flow that was discovered at the field site provided 

a potential zircon source for radiometric dating (Thomas et al., 2017). However, the 

relationship between the lava flow and the exposed Famennian shallow marine stratigraphic 
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sequence was unknown. The area is structurally complex, and any unmapped faults in the 

area could potentially eliminate the usefulness of a radiometric age from the lava flow. 

Alternatively, if the lava flow was structurally continuous with the beach sediments used for 

detailed conodont biostratigraphy, the radiometric age could be used in conjunction with 

biostratigraphy to obtain a more accurate depositional age. In addition, it would allow us to 

constrain the stratigraphic positions of the Kellwasser and Hangenberg Events. Another 

motivation for determining the structural relationship of rocks in the area was to ascertain 

the usefulness of Sr isotope values. They are important either for recording the signature of 

groundwater discharge from the terrestrial sediments into the surrounding fringe reefs, or for 

helping us understand the oceanic conditions during deposition (as described for the 

sediments on the West Junggar Arc by Carmichael et al., 2017). 

We answered these questions in July-August 2018 as part of our expedition to the 

Hoshoot Shiveetiin Gol locality, when we mapped the study site and the surrounding area. 

Here we show that the lava flow is stratigraphically continuous with the shallow marine 

sequence, the Hangenberg regression event is recorded as an arkosic sandstone, and that 

multi-proxy geochemical and lithological analysis (similar to that in Part II of this thesis) will 

be critical to assess the severity of the marine anoxia events and mass extinctions 

preserved at Hoshoot Shiveetiin Gol.  
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2. Materials and Methods 
 

Topographic maps (45.264°N - 45.274°N, 91.04°E - 91.06°E) of the field site were 

produced using Generic Mapping Tools (GMT) (Fig. I-1). Prior to creating these maps, the 

only existing topographic maps of our field site were 1:240,000 scale Russian maps, which 

are insufficient for m-scale geologic mapping. The digital elevation model (DEM) data were 

retrieved from the U.S. Geological Survey (USGS) Earth Explorer website. The 1 arc-second 

DEM data were collected by the NASA Shuttle Radar Topography Mission (SRTM), and the 

topographic maps produced with these data were used for geologic mapping in the field. 

The primary topography map used in the field is shown in Fig. I-1, with previously-collected 

samples (from 2014) shown in red triangles which were used for reference.  

Our geologic field map of the Hoshoot Shiveetiin Gol field site was produced using 

standard geologic mapping techniques. We used rock hammers, Brunton compasses, and 

handheld GPS units with precision within ~3 m (Garmin GPSMAP 64). Strike and dip 

measurements and GPS coordinates were taken at each mapping site. We collected 

lithologic, bedding orientation, and additional observational data from over 80 stops (see 

Table I-2) in order to create a meter-scale geologic map of the field site. 

Other team members at Hoshoot Shiveetiin Gol recorded detailed stratigraphy data 

and collected samples for conodont biostratigraphy and chemostratigraphy; collected fossil 

samples including rugose corals, echinoderms, and bivalves; and performed km-scale 

mapping of the region (including but not limited to Hoshoot Shiveetiin Gol).  
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3. Results  

We defined eight geologic mapping units (described in Table I-1), and the field data 

collected at Hoshoot Shiveetiin Gol are recorded in Table I-2. Our preliminary interpretations 

are presented in the geologic field map in Fig. I-2. We inferred a fault via large-scale satellite 

images (provided by Mongolian colleagues), and our interpretations were digitized and 

further refined by overlaying field data with satellite images in Adobe Illustrator (Fig. I-3). A 

large antiform trending ENE is the dominant structural feature in the mapping area. Based 

on lithology and conodont biostratigraphy (personal communication, Peter Königshof), this 

feature is a plunging syncline. Our map (Fig. I-3) reveals that the sedimentary units are 

continuous except for the one fault which only offsets the units by ~50 m or less. 

The base of unit ark1 is composed of coarse-grained arkosic sandstone with local 

conglomerate lenses and plant fossils (see Table I-1), which we interpret as the Hangenberg 

sandstone and regression event. This rock unit marks the base of the Carboniferous, an 

interpretation supported by the presence of plant fossils (that have not been taxonomically 

classified at this time). Therefore, the detailed sedimentary logs represented as lines “HS-1” 

to “HS-16f” and “HS-W” (standing for Hoshoot Shiveetiin 1-16f and Hoshoot Shiveetiin-west, 

respectively) can be correlated with one another to create a stratigraphic section crossing 

not only the F-F boundary, but also the D-C boundary. This stratigraphic correlation and 

detailed lithologic logs were completed by colleagues Allison Dombrowski, Peter Königshof, 

and Sersmaa Gonchigdorj. Our m-scale map is also consistent with the km-scale mapping 

by team members Ariunchimeg Yarinpil, Otgonbaatar Dorjsuren, Tumurchudor Choimbol, 

Ganbayar Guunchinbat, and Otgonbayar Nerkhjav, shown in Figure I-5. The lava flow is 

located stratigraphically higher than the D-C boundary, making it Early Carboniferous in age, 

and therefore not an essential source of zircons for age dating. 

 



14 
 

 

4. Discussion 

The Hoshoot Shiveetiin Gol site in the Devonian East Junggar Arc (within the CAOB) 

represents a unique paleogeographic location compared to other study locations within the 

epicontinental seaways and basins of Euramerica and northern Gondwana (Fig. P-1), 

meaning that there are few studies to use as direct comparison.  

A few studies of Late Devonian island arc settings analogous to this study do exist, 

particularly in the Devonian West Junggar island arc (Carmichael et al., 2014; Carmichael et 

al., 2016; Kido et al., 2013; Suttner et al., 2014; Wang et al, 2016). The F-F Zhulumute and 

Hongguleleng Formations in Xinjiang, China are discussed in Suttner et al. (2014), 

Carmichael et al. (2014), and Wang et al (2016). These studies show that the typical black 

shale (seen in other paleogeographic locations, particularly Euramerica) is missing in island 

arc settings, and that there is no change in mineralogy across the F-F boundary (Carmichael 

et al., 2014; Suttner et al., 2014). Analysis of the D-C Heishantou Formation (also in in 

Xinjiang, China) shows that the Hangenberg Event is recorded on a steep slope, accreting 

island arc complex, even though no black shale (HBS) is present (Carmichael et al., 2016). 

An albite-rich siltstone/sandstone is present just above the interpreted D-C boundary 

(representing a marine regression) (Carmichael et al., 2016), which is analogous to the 

arkosic sandstone (the base of unit ark1) found at Hoshoot Shiveetiin Gol. We interpret this 

arkosic sandstone to be the HSS found in other paleogeographic locations. Our findings (in 

conjunction with work in Xinjiang, China) suggest that correlating sediments between island 

arc and epicontinental basin depositional settings, at least lithologically, is minimally useful.  

Geochemical comparisons are more useful than lithologic comparisons for 

determining the presence of anoxia events (see Carmichael et al., 2014; Carmichael et al., 

2016), but geochemical analyses have not yet been completed for Hoshoot Shiveetiin Gol 

sediments. This will be the next step of this research project that will be continued by other 
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members of the DAGGER research team, including Allison Dombrowski. Thorough analysis 

of geochemical proxies (including PCA analysis) and presence/size distributions of pyrite 

framboids (see Part II of this thesis for methodology) will be necessary to correlate this 

section with other Late Devonian sections and to make more substantiated comparisons to 

other studies.  
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5. Conclusions 

Although our team expected to locate only the stratigraphic position of the F-F 

boundary via conodont biostratigraphy, we were in fact able to identify the HSS event in the 

field as the lithologies recorded a large-scale regression event and a marine to terrestrial 

transition. Based on our field mapping, the section is continuous, making the site a useful 

and potentially critical study location to show how the Kellwasser and Hangenberg Events 

are preserved in this paleogeographic setting and depositional environment. Radiometric 

dating of the basalt flow (unit lf in Table I-1 and Fig. I-3) may be unnecessary depending on 

the results of conodont biostratigraphy, allowing our study to move forward and focus on 

detailed geochemistry, cyclostratigraphy, and facies analysis, for example. The work 

outlined in Part I of this thesis comprises the preliminary work required for the multiproxy 

approach that is outlined for a different paleogeographic location in Part II.  

 

  



17 
 

 

Tables 
 
Table I-1: Detailed rock descriptions of the units mapped at m-scale.  

Unit Abbreviation Unit Description 

al 
Alluvium and landslide deposits that include float consisting of basalt, 
breccia, conglomerate, greenstone, and microbialites. 

slt3 

Interbedded yellow-brown-green shale and black (weathered), gray-green 
(fresh) siltstone (beds ~20 cm thick) with some coarse sandstone to 
conglomerate (grains up to 3 mm diameter) layers, localized lava flows, 
and rare plant fossils 

lf Dark brown-black calc-alkalic vesicular basalt lava flow 

cong1 
Gray-brown (weathered), light gray-brown/tan (fresh) polymictic 
conglomerate (0.5-1 cm diameter clasts) with layers of dark brown-black 
and gray-green coarse sandstone and siltstone 

ark1 

Brown-gray with white speckles (weathered), whitish-gray (fresh) coarse-
grained subangular to subrounded arkosic sandstone (~1 mm diameter 
grains) with local conglomerate lenses, contains plant fossils (lowermost 
Carboniferous) 

cono 
Green, yellow, and brown shale with fossiliferous limestone layers, many 
layers of volcanic ash (Frasnian and Famennian) 

slt2 
Light green-brown (weathered), light gray-green (fresh) siltstone with rare 
fossils, contains some mm-scale limestone beds and local limestone 
nodules 

slt1 
Brownish-gray-green with orange staining (weathered), dark gray-green 
(fresh) siltstone with varying bed thickness at cm scale 
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Table I-2: Data recorded in the field for m-scale mapping, including GPS coordinates, 
orientation of bedding, and unit or unit contact. Within the dip column, v = vertical and o = 
overturned. 
 

Stop 
# 

Latitude Longitude Strike Dip Unit or Contact  

1 N 45.27287 E 91.05529 121 30 slt1 
2 N 45.27271 E 91.05506 100 44 slt1-slt2 contact  
3 N 45.27226 E 91.05465 111 45 slt2 
4 N 45.27211 E 91.05441 095 47 slt2 
5 N 45.27195 E 91.05438 082 50 slt2-cono contact 
6 N 45.27179 E 91.05447 ~090 - ash layer in cono 
7 N 45.27152 E 91.05420 101 54 cono 
8 N 45.27148 E 91.05374 083 63 cono 
9 N 45.27087 E 91.05316 065 63 cono-ark1 contact 
10a N 45.27083 E 91.05304 081 80 ark1 
10b N 45.27085 E 91.05299 084 60 ark1 
10c N 45.27079 E 91.05294 068 42 ark1 
10d N 45.27078 E 91.05305 095 79 ark1 
10e N 45.27076 E 91.05314 121 74 ark1(w/ plant fossils) 
10f N 45.27083 E 91.05325 155 58 ark1 
11 N 45.27065 E 91.05321 - - ark1 
12 N 45.27082 E 91.05289 050 50 ark1 (base) 
13 N 45.27076 E 91.05244 055 30 ark1 
14 N 45.27071 E 91.05188 084 46 ark1 
15 N 45.27067 E 91.05162 063 61 ark1(w/ nodules) 
16 N 45.27020 E 91.05071 - - slt3 conglomerate lens  
17 N 45.27108 E 91.05004 110 55 ark1 
18 N 45.27260 E 91.04904 107 49 cono (w/ crinoids) 
19 N 45.27236 E 91.04889 123 46 cono (bryozoan bed) 
20 N 45.27261 E 91.04926 118 62 cono 
21 N 45.27266 E 91.04924 117 62 cono  
22 N 45.27283 E 91.04954 119 66 cono 
23 N 45.27294 E 91.04972 - - cono (crinoid layer) 
24 N 45.27297 E 91.04992 114 53 cono-slt2 contact 
25 N 45.27382 E 91.05052 - - basalt float, al 
26 N 45.27404 E 91.05076 106 44 slt1-slt2 contact 
27 N 45.27354 E 91.05098 080 64 slt2 (w/ nodules) 
28 N 45.27162 E 91.04832 125 56 cong1-ark1 contact 
29 N 45.27138 E 91.04832 - - cong1-slt3 contact 
30 N 45.27107 E 91.04682 080 68 slt3 
31 N 45.27435 E 91.04876 116 50 slt1 
32 N 45.27405 E 91.04832 111 45 slt1-slt2 contact 
33 N 45.27433 E 91.04872 120 54 slt2 
34 N 45.27329 E 91.04768 - - cono 
35 N 45.27293 E 91.04714 - - cono 
36 N 45.27293 E 91.04714 - - ash layer in cono 
37 N 45.27224 E 91.04663 090 55 ark1-cono contact 
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Stop 
# 

Latitude Longitude Strike Dip Unit or Contact  

38 N 45.27217 E 91.04646 085 46 ark1-cono contact 
39 N 45.27202 E 91.04674 088 44 cong1-slt3 contact 
40 N 45.27193 E 91.04633 - - basalt (float?) 
41 N 45.27172 E 91.04629 - - basalt (float?) 
42 N 45.27157 E 91.04622 080 32 basalt (float?) 
43 N 45.27121 E 91.04991 124 60 cono-ark1 contact 
44 N 45.27101 E 91.05006 108 45 ark1-cong1 contact 
45 N 45.27049 E 91.05020 076 73 cong1-slt3 contact 
46 N 45.26988 E 91.05050 - - basalt in slt3 
47 N 45.27057 E 91.05190 - - ark1-cong1 contact 
48 N 45.26867 E 91.05306 219 65 ark1 
49 N 45.26888 E 91.05280 205 ~v ark1-cong1 contact 
50 N 45.26897 E 91.05249 202 ~v ark1-cong1 contact 
51 N 45.26940 E 91.05257 165 v cong1 
52 N 45.26959 E 91.05313 010 65 ark1-cono contact 
53 N 45.27020 E 91.05330 185 56 ark1-cono contact 
54 N 45.27041 E 91.05348 138 69 ark1-cono contact 
55 N 45.27044 E 91.05251 010 62 ark1-cong1 contact 
56 N 45.27012 E 91.05229 038 v ark1 
57 N 45.27004 E 91.05225 171 70 ark1-cong1 contact 
58a N 45.26979 E 91.05179 166 80 cong1 
58b N 45.26969 E 91.05184 155 80 cong1 
58c N 45.27002 E 91.05173 180 v cong1 
59 N 45.27010 E 91.05170 050 ~v cong1 
60 N 45.26884 E 91.05161 - - vesicular basalt in cong1 
61 N 45.26861 E 91.05198 ~019 - gabbro in cong1 
62 N 45.26833 E 91.05145 009 85 cong1-slt3 contact 
63 N 45.26777 E 91.05144 344 85o cong1-slt3 contact 
64 N 45.26664 E 91.05118 170 65 cong1-slt3 contact 
65 N 45.26691 E 91.05219 195 45 cong1 
66 N 45.26670 E 91.05247 196 65 cong1-ark1 contact 
67 N 45.26633 E 91.05276 210 50 ark1-cono contact 
68 N 45.26616 E 91.05267 207 65 cono 
69 N 45.26616 E 91.05335 - - ash layer in cono 
70 N 45.26617 E 91.05323 207 79 cono (w/ brachiopods) 
71 N 45.26644 E 91.05397 213 75 cono 
72 N 45.27175 E 91.05136 160 66 cono (w/ pyroclastic flow) 
73a N 45.27149 E 91.05145 141 60 cono 
73b N 45.27141 E 91.05153 104 52 cono 
74 N 45.27154 E 91.05220 103 49 cono 
75 N 45.27115 E 91.05406 070 56 ark1-cono contact 
76a N 45.27098 E 91.05406 200 ~v cono 
76b N 45.27090 E 91.05412 120 57 cono  
76c N 45.27092 E 91.05432 115 67 cono 
76d N 45.27065 E 91.05509 165 66 cono 
76e N 45.27050 E 91.05512 197 72 cono 
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Stop 
# 

Latitude Longitude Strike Dip Unit or Contact  

76f N 45.27026 E 91.05486 040 75 cono 
77 N 45.27063 E 91.05421 107 55 cono 
78 N 45.27074 E 91.05403 127 56 cono 
79 N 45.27044 E 91.05575 205 80 slt2 (w/ nodules) 
80 N 45.27021 E 91.05601 032 v slt2 
81 N 45.27033 E 91.05621 215 75 slt2 (w/ fossiliferous bed) 
82 N 45.27062 E 91.05634 167 72 slt2 
83 N 45.27074 E 91.05638 165 59 slt2 
84 N 45.27008 E 91.05674 214 74 slt1 
W-1 N 45.27216 E 91.04814 105 44 ark1-cono contact 
W-2 N 45.27283 E 91.04893 112 72 cono 
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Part I Figures 

 

  
Figure I-1. Raw topography map of Hoshoot Shiveetiin Gol made in GMT prior to fieldwork. It includes sample names and locations 
from preliminary work completed in 2014. Contour intervals are 10 m. This map was used in the field as a basemap for manually 
recording bedding orientation and unit contact information.  
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Figure I-2. Field map of Hoshoot Shiveetiin Gol field site using recorded data (found in 
Table 2) and large-scale satellite image (Fig. I-3). The legend was taken from my field notes, 
with the basalt being situated within unit cong1, indicated by the line connecting “basalt” to 
the cong1 unit. Red dots represent previous sample locations. See Fig. I-4 for finalized map. 
A fault is inferred from a satellite image we had in the field in the southern part of the 
mapped area, and detailed stratigraphic section locations are marked with black lines 
(labelled HS-1 to HS-16f and HS-W) (detailed stratigraphic logs produced by team 
members). Unit contacts and the fault are more clearly labelled in Fig. I-4. 
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Figure I-3. Satellite image of the locality, with the same dimensions as the topography map in Fig. 1. This was used in addition to 
field data (see Table I-2) to develop the final digitized map presented in Fig. I-4.  
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Figure I-4. Digitized and refined geologic map of Hoshoot Shiveetiin Gol.  
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Figure I-5. km-scale geologic map made by team members Yarinpil, Dorjsuren, Choimbol, Guunchinbat, and Nerkhjav. Our focus 
area (Hoshoot Shiveetiin Gol) is outlined in blue.  
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Part II 
THE DEVONIAN-CARBONIFEROUS BOUNDARY IN VIETNAM: SUSTAINED OCEAN 

ANOXIA AND A POTENTIAL VOLCANIC TRIGGER FOR THE HANGENBERG CRISIS? 

 

1. Introduction 

The Devonian-Carboniferous (D-C) transition and mass extinction is characterized as 

a period of severe ecological crisis, with major biotic and palaeoenvironmental changes in 

both terrestrial and marine ecosystems. The extinction eliminated about 20% of marine 

invertebrate genera, such as trilobites, ammonoids, conodonts, and corals (Sandberg et al., 

2002; Sepkoski, 1996; Walliser, 1996). The event primarily decimated pelagic organisms 

such as fish and cephalopods, reducing long-term biodiversity of all vertebrates by 50% (see 

reviews by Becker et al., 2016; Kaiser et al., 2015). The ecological severity index by 

McGhee et al. (2013) characterizes the end Devonian extinction as the fourth most severe 

mass extinction event in Earth's history.  

Historically, the D-C boundary has been defined via conodont biostratigraphy from 

the Global Stratotype Section and Point (GSSP) location La Serre Trench E’ section, 

Montagne Noire, France, with the first appearance of the basal Carboniferous conodont 

Siphonodella sulcata (Flajs and Feist, 1988; Paproth et al., 1991). However, these early 

siphonodellids are difficult to identify due to taxonomic uncertainties (Corradini et al., 2011), 

and the D-C boundary therefore needs to be reevaluated, either via new biostratigraphic 

indicators (Aretz, 2013; Corradini et al., 2017) or via a combined biostratigraphic and 

sedimentological set of criteria (Becker et al., 2016; Walliser, 1984). 

The D-C transition is associated with not only a mass extinction, but also the 

Hangenberg ocean anoxia and regression event. The event is named for the Hangenberg 

Black Shale beds in the Rhenish Massif, Germany and has been recognized on 
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epicontinental basins or continental margins in Europe, North America, South China, and 

Morocco (Kaiser et al., 2015 and references therein) as well as in the Central Asian 

Orogenic Belt (Carmichael et al., 2016). The sedimentation of these locations can be 

complicated by tectonic overprinting associated with the Appalachian/Variscan orogenies or 

other local volcanism, and nearly all places where the Hangenberg Event has been studied 

to date are associated with sediments derived from cratons (see reviews by Becker et al., 

2016; Kaiser et al., 2015).  

The Hangenberg Crisis can be subdivided into the Hangenberg Black Shale Event 

(HBSE), and the regressive Drever Sandstone Event (at times only visible as an 

unconformity) (summarized in Kaiser et al., 2015). The HBSE is correlated with widespread 

deposition of black shale and is frequently (but not always) characterized by carbon isotope 

anomalies (Kaiser et al., 2015). The global regression associated with the Hangenberg 

Crisis appears to be related to continental icesheet growth as recorded by glacial sediments 

and palynomorph analyses in South America (Caputo et al., 2008; Isaacson et al., 1999; 

Streel et al., 2000), North Africa (summarized in Isaacson et al., 2008) and mountain 

glaciers in the Appalachians of North America (Brezinski et al., 2010; Brezinski et al., 2009). 

Aside from a general agreement regarding a glacially-influenced regression, the anoxia 

mechanisms that form the HBSE are still debated.  

In fact, the processes and mechanisms of all of the Devonian ocean anoxia events 

(such as the Dasberg, Kellwasser, and Eifelian Events, as well as the HBSE) still remain 

contentious, as they likely represent a combination of long-term and short-term factors (see 

reviews by Carmichael and Waters, 2015; Kaiser et al., 2015; McGhee, 2001; McGhee, 

2005; Racki, 2005). Long-term components of Late Devonian climate instability and 

changes in sediment/nutrient supply to the oceans include a dramatic decrease in 

atmospheric CO2 via the evolution of complex land plant ecosystems, which increased the 



28 
 

 

amount of nutrients supplied to the oceans (Algeo et al., 1995; Algeo and Scheckler, 1998), 

along with active tectonic processes in the tropics that changed climate and wind/ocean 

currents, and provided nutrients (both siliciclastic and soils) to the oceans (Averbuch et al., 

2005; Copper, 1986). Trigger mechanisms for these shorter pulses of Devonian anoxia may 

include orbital forcing (De Vleeschouwer et al., 2014; De Vleeschouwer et al., 2017; De 

Vleeschouwer et al., 2018; De Vleeschouwer et al., 2013), the presence of large igneous 

provinces (LIPs) (Bond and Wignall, 2014), or prolonged volcanic activity from a variety of 

sources (Racki et al., 2018). The Frasnian-Famennian extinction has now been correlated to 

a series of volcanic events through mercury chemostratigraphy (Racki et al., 2018).  

It is important to recognize that most of the information about the Hangenberg Event 

is compiled from sites along tropical continental margins or within epicontinental basins, 

many of which were receiving increased sediment supply due to active tectonism during the 

late Famennian (Averbuch et al., 2005). This tectonic activity (Variscan/Appalachian 

orogeny) supplied increased amounts of sediments and nutrients to the oceans, potentially 

overprinting truly global signatures of anoxia with more localized signatures of 

eutrophication. The massive uplift also changed wind and ocean circulation patterns, 

changing local climates. For example, the German Standard D-C boundary at the Drewer 

Quarry is a famous example of the lithological preservation of the Hangenberg Crisis, but 

the deposition of these sediments was affected by active tectonism and only represents one 

specific paleoenvironmental setting.  

As a step towards addressing this problem of sample bias, here we discuss the 

Hangenberg Event in a new location in Vietnam, in a sediment-starved carbonate basin that 

is associated with the South China continental block and was far from any tectonically or 

volcanically-derived source material, and we provide possible trigger mechanisms for the 

anoxia and extinction at the D-C boundary. 
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2. Regional Geology and Biostratigraphy  

The Devonian to Carboniferous Pho Han Formation is exposed at the Cat Co 3 

beach on Cat Ba Island, Hai Phong Province, northeastern Vietnam (Fig. II-1). The geologic 

setting and a detailed sedimentological description of the unit are described in detail in 

Komatsu et al. (2014). The Cat Co 3 section is unique because it is one of the few sections 

on the eastern South China continental block of the Paleotethys Sea (Fig. II-2) that 

preserves continuous deposition across the D-C boundary (Komatsu et al., 2014). At the Cat 

Co 3 beach section Cat Ba Island, the Pho Han Formation is approximately 500 m thick and 

consists of ramp platform carbonates and slope deposits (Doan and Tong-Dzuy, 2006; 

Komatsu et al., 2014; Komatsu et al., 2012; Ta Hoa and Doan, 2005; Ta Hoa and Doan, 

2007). The depositional environment of these carbonates is interpreted as deep ramp to 

marginal basin plain, and primarily consists of alternating whitish gray to gray limestones, 

micritic limestones, and marls, with interbedded thin dark gray limestones and organic-

carbon-rich black shales (Fig. II-3) (Komatsu et al., 2014). The alternations of thin dark gray 

limestone and black shale show no evidence of bioturbation, whereas the limestones are 

occasionally bioturbated (Komatsu et al., 2014). The fossil content of the carbonates is 

mainly composed of brachiopods, crinoid stems, conodont elements, and foraminifera 

(Komatsu et al., 2014).  

The Cat Co 3 beach section spans the Palmatolepis expansa conodont zone to the 

Siphonodella duplicata conodont zone (Komatsu et al., 2014; Ta Hoa and Doan, 2005; Ta 

Hoa and Doan, 2007) (Fig. II-3). The prior standard Devonian-Carboniferous boundary 

definition is based on the first appearance of the conodont Siphonodella sulcata following 

the Siphonodella praesulcata subzone (Paproth et al., 1991; Sandberg et al., 1978; Ziegler 

and Sandberg, 1990). Bed 115c can be correlated with the Upper Siphonodella praesulcata 

subzone and Siphonodella sulcata appears for the first time in bed 119. Unfortunately, 
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conodonts are rare in beds 116-118 due to lithology. More recent work by Corradini et al. 

(2017) instead suggests that the D-C boundary is placed between Bispathodus ultimus and 

Protognathodus kockeli, with the base of the Carboniferous defined at the first appearance 

of either Protognathodus kockeli or Siphonodella bransoni. In the Cat Co 3 beach section, 

unfortunately, these conodonts were not found. Thus we place the D-C boundary 

somewhere within beds 116-118. 

Beds 115b-120 (the alternating dark gray limestone and organic carbon-rich black 

shales) were tentatively identified by Komatsu et al. (2014) as potential Hangenberg Crisis 

markers as they have well-developed parallel laminations and no bioturbation. This study 

therefore focuses on beds 104-125 of the original Komatsu et al. (2014) study, which 

bracket the biostratigraphically constrained D-C transition and the expected location of the 

Hangenberg Crisis. 
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3. Materials and Methods 

Whole rock geochemical analyses (major, trace, and rare earth element (REE) 

geochemistry) were performed by Activation Laboratories in Ancaster, Ontario, Canada, 

using the Total IDENT 4E-Research package, with Code 1G-Hg CV Hg-Cold Vapour FIMS 

for Hg analyses. Total organic carbon (TOC) data was taken from Komatsu et al. (2014).  

Carbon isotope analyses for both calcite and organic carbon (δ13Ccarb and δ13Corg) 

were performed in the GeoZentrum Nordbayern at the Friedrich-Alexander Universität 

Erlangen-Nürnberg, Erlangen, Germany. Calcite samples were powdered and mixed with 

100% phosphoric acid at 70°C, and analyzed via a Gasbench II system with a 

ThermoFinnigan Delta Five Plus mass spectrometer. Carbon isotope analysis of organic 

carbon was performed using a Carlo-Erba1110 elemental analyzer coupled with to a 

ThermoFinnigan Delta Plus mass spectrometer. All values are reported in ‰VPDB.  

Principal component analysis (PCA) was performed using program PAST 3.2 

(Hammer et al., 2001) after geochemical data were converted to elemental weight percent 

and adjusted using the arcsine transform in Microsoft Excel. PCA was performed on whole-

rock geochemical data, and repeated using trace elements only.  

Samples were analyzed for mineralogy and framboidal pyrite distributions using a 

JEOL JSM-IT300LV scanning electron microscope (SEM) with an Oxford AZtecEnergy 

integrated silicon drift energy dispersive X-ray spectroscopy (EDS) system at the Dewel 

Microscopy Facility at Appalachian State University in Boone, NC. Automated feature 

detection, measurement, and analysis was done with the Oxford Aztec software to scan, 

count, and measure the diameters of pyrite framboids.  

Two test samples (bed 110 and 121) were analyzed in order to determine an 

accurate yet efficient way to assess the size and distribution of pyrite framboids. Using the 

Features function in the Oxford Aztec EDS software, a 1 cm2 area of the sample was 
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scanned with 0% frame spacing at 500X magnification (2028 photos), and framboids were 

detected using a grayscale analysis of all features >2 μm in diameter. Samples were 

analyzed again using a 100% frame spacing (520 photos, representing 0.26 cm2 spread 

evenly over 1 cm2), under the same magnification and framboid detection conditions. The 

resulting data were exported into Microsoft Excel for data analysis. For both samples, the 

number of framboids counted using 0% spacing (all photos adjacent) vs. 100% spacing 

(photos staggered by every other photo) are within 10% of each other, when the 100% 

spacing framboid count was multiplied 4 to extrapolate the number of framboids per unit 

area (1 cm2). This process indicates that using 100% spacing when analyzing samples for 

framboids is still within 10% of the actual value. As long as the number of framboids 

exceeded 100 (for histogram analysis), we used 100% spacing during automation for time 

purposes (2 hour analysis time vs. 8 hours for each sample). The distribution of framboid 

sizes (length and equivalent circle diameter, or ECD) for 0 and 100% spacing were also 

analyzed to ensure that the distribution was not affected by the reduction in frames. None of 

the analyzed samples contained <100 framboids, so 100% spacing was used for all nine 

representative samples. 

Overall, statistical analysis of 0% grid spacing (100 mm2 total analyzed area, using 

2028 images) vs. 100% grid spacing (26.21 mm2 total analyzed area, using 520 images) 

shows that 100% spacing produces a framboid count and size distribution that is consistent 

with 0% spacing. Therefore, 100% spacing was used for all nine representative Pho Han 

samples, scanning an area of 26.21 mm2 within 520 frames evenly spaced over a 1 cm2 

grid. 
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4. Results and Discussion 

4.1. Geochemical Analyses 

There is a major change in total organic carbon (TOC) and trace element 

geochemistry between beds 115a and 121 of the Cat Co 3 beach section of the Pho Han 

Formation that corresponds to the expected location of the Hangenberg Crisis (Fig. II-4). 

While caution must be exercised when considering redox and productivity proxies, as many 

are inconsistent and controlled by lithology and/or depositional environment (Brumsack, 

2006; Carmichael et al., 2016; Piper and Calvert, 2009; Tribovillard et al., 2006; Ver 

Straeten et al., 2011), the section studied has relatively consistent lithology (limestones, 

organic-rich limestones) with the exception of a minor increase in clay particles at the 

stratigraphic position of the Hangenberg Crisis. SEM-EDS analysis indicates that the only 

non-carbonate input is rare fine quartz silt and illite clay particles. Beds 116, 117, 120, and 

121 (beds near the stratigraphic position of the D-C boundary) contain slightly more Al2O3 

than the other samples, but SEM-EDS analysis of these beds reveals no change in 

mineralogy or mean grain size in these samples, only changes in the relative abundance of 

calcite, quartz silt, and illite clay. Additionally, microfacies analysis shows no major changes 

in depositional environment across the section (Komatsu et al., 2014). All bulk rock and 

trace elemental values (as well as detection limit) can be found in Table II-1.  

 

4.1.1. Lithology and resulting caveats on proxy data   

Although provenance analysis described by Bhatia and Crook (1986) is sometimes 

useful, the lack of significant sand-size detrital input from coastal margins (either active or 

passive) precludes this method. However, microfacies analysis is consistent with a 

carbonate basin setting that is far offshore (Komatsu et al., 2014).  
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Beds 116 and 117 at the expected location of the HBS event contain the most 

detrital material and are the most Al-rich samples in the section with an Al2O3 content of 2.9 

wt. % compared to the average background value of 0.32 wt. % (for the Famennian part of 

the section). Extremely low Al content makes trace element normalization to Al quite 

problematic for interpreting redox and productivity proxies (Tribovillard et al., 2006), as minor 

changes in Al content will amplify natural scatter in trace element data rather than reflect 

actual excursions.  

Average Al/Ti ratios in the Cat Co 3 section are 38.7 (Fig. II-5), more than double the 

average Al/Ti ratio of 17 found in the reference Post Archean Australian Shale (PAAS). This 

indicates Al scavenging by organic matter in the water column and/or diagenetic clay 

formation rather than a detrital contribution (Murray and Leinen, 1996). Furthermore, using 

the methodology of Van der Weijden (2002) that compares the coefficient of variation (the 

standard deviation divided by the mean) for Al against that of individual trace elements, 

nearly all the standard anoxia and productivity trace element proxies used in this study 

become distorted and potentially useless when normalized to Al. Taken together with the 

Al/Ti ratios, which indicate biological and/or diagenetic processes of Al deposition rather 

than detrital processes where normalization to shales would be useful, none of the 

geochemical proxy data used for this study has been normalized.  

Previous studies show that changes from carbonate to clastic-dominated 

sedimentation can indicate total shutdown of the carbonate factory (Krencker et al., 2014). 

Carbonate factory demise is one mechanism that could have caused the change in 

sedimentation at beds 116 and 117 from carbonate-dominated lithologies to carbonates with 

slightly increased clay content and a high phosphorous accumulation rate (Krencker et al., 

2014). As shown in Figure II-6, beds 116 and 117 contain the highest amounts of excess 

P2O5. The alternative explanation is that the clastic sediment had a 
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terrigenous/upslope/fluvial source. The Cat Co 3 section contains no increase in detrital 

proxies Ti/Al, Si/Al or Zr/Rb in beds 116 and 117. Therefore, we conclude that the change in 

lithology is due to a carbonate cycle perturbation, due to the lack of detrital (fluvial) 

sediments in beds 116 and 117.  

 

4.1.2. Anoxia/Redox proxies 

TOC enrichment is a primary indicator of oceanic anoxia (Calvert and Pedersen, 

1992; Tribovillard et al., 2006), and the Pho Han Formation displays TOC enrichment 

between beds 115c and 120, with a maximum of 5.8 wt. % in bed 116 versus an average 

background value of <0.5 wt. % (Fig. II-4). Enrichments in total S are also used as a primary 

anoxia indicator (Lyons et al., 2003; Tribovillard et al., 2006). Beds 116 and 117 likewise 

show up to 2 wt. % S enrichment, which is likely controlled by the abundance of pyrite. 

Carbon isotope values do not show any noticeable trends throughout the section, even at 

the expected location of the Hangenberg Crisis, either in δ13C in carbonate or in organic 

carbon (discrepancies in duplicate analyses are being investigated). This is not particularly 

unusual, especially within the South China block where δ13C values across the Hangenberg 

Crisis interval are inconsistent (Bai et al., 1994; Qie et al., 2015). Although many studies do 

show a positive δ13C excursion across the Hangenberg Crisis interval (reviewed in Kaiser et 

al., 2015), this excursion is not ubiquitous across all locations (Brand et al., 2004; Cramer et 

al., 2008; Kumpan et al., 2014a; Kumpan et al., 2014b).  Therefore the absence of an 

obvious positive δ13C excursion at the expected location of the Hangenberg Crisis does not 

negate the presence of the Hangenberg Crisis. 

Authigenic U is rarely affected by detrital provenance (Tribovillard et al., 2006), and 

Pho Han sediments likewise show that authigenic U is not coupled with lithology (Fig. II-6). 

Authigenic U is distinguished from detrital U and calculated with the following formula: Uauth 
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= Utot –Th/3, where Th/3 approximates detrital uranium (Wignall and Myers, 1988). Bed 117 

contains the largest amount of authigenic U (24.5 ppm), and surrounding beds 116-119 

display elevated levels (>5 ppm).   

Ce anomalies <-0.1 are generally considered to show anoxic signatures (German 

and Elderfield, 1990; Morad and Felitsyn, 2001; Wilde et al., 1996). Ce anomalies were 

calculated using the formula: Ceanom = log [3Cen/(2Lan + Ndn)], in which n signifies the 

REE normalization to the North American Shale Composite (NASC) (Elderfield and 

Greaves, 1982; Wright et al., 1987). Ce anomalies with La/Sm<0.35 indicate diagenetic 

apatite rather than ocean redox conditions (Morad and Felitsyn, 2001). La/Sm values within 

Pho Han sediments range between 4.07 and 12.01, indicating that Ce anomalies may be 

used to determine ocean redox conditions during deposition. Out of all geochemically 

sampled beds (104-126), only two beds (123 and 125) have Ce anomaly values that are not 

considered anoxic (Fig. II-6).  

Mo accumulates in restricted basins under long-term anoxic conditions, with 

concentrations reaching 50-200 ppm (Algeo and Lyons, 2006; Algeo et al., 2007; Algeo and 

Maynard, 2008), and is rarely affected by detrital input (Tribovillard et al., 2006). Beds 116 

and 117 showed a dramatic enrichment in Mo, with values 123 ppm and 44 ppm, 

respectively. Only five other beds (118, 119, 120, 121, and 124) contained Mo 

measurements that are above the detection limit (2 ppm), but none exceeded 10 ppm. Mo 

values of 0-20 ppm are correlated with non-euxinic conditions, 20-40 ppm to possible 

euxinia, 40-70 ppm to seasonal euxinia, and 70-90 ppm to possible well-established euxinia, 

and Mo values >90 ppm are diagnostic of persistent euxinic conditions (Formolo et al., 

2014). However, Mo values can underestimate actual euxinic conditions due to Mo 

sequestration outpacing Mo resupply under sulfidic and euxinic conditions (Algeo, 2004). In 

these cases, additional proxies can be used, such as Mo/TOC ratios (Algeo and Lyons, 
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2006). The Mo > 90 ppm in Pho Han bed 116 and elevated values in bed 117 (44 ppm) 

indicate anoxic to highly euxinic conditions (Fig. II-4), consistent with the Hangenberg Crisis.  

V ratios, such as V/Cr and V/(V+Ni), are also commonly used as redox proxies and 

have been used in a variety of studies. Other sections that cross the D-C boundary have 

shown dramatic increases in V/Cr at the Hangenberg Crisis (Beier and Hayes, 1989; Caplan 

and Bustin, 1998; Marynowski et al., 2012; Perkins et al., 2008; Rimmer, 2004). Early work 

by Ernst (1970) and Jones and Manning (1994) suggested that sedimentary V/Cr values 

>4.25 record anoxic conditions, 2.0-4.5 record dysoxic conditions, and <2.0 record fully oxic 

conditions. Hoffman et al. (1998) and Averbuch et al. (2005) countered that V/Cr = 1.0 is the 

dysoxic-anoxic boundary, and values 1-5 record anoxia. Modern euxinic environments 

including the Black Sea, the Cariaco Basin, the Saanich Inlet, and the Framvaren Fjord have 

V/Cr values ranging between 0.68 and 2.25 (calculated from Algeo and Maynard, 2004). 

The boundary between oxic and anoxic conditions as recorded by V/Cr ratios obviously 

varies with different studies, but in general increasing V/Cr ratios have been correlated with 

increased anoxia (e.g. Marynowski et al., 2012). Using the V/Cr criteria of Jones and 

Manning (1994) and Ernst (1970), most of the Cat Co Beach 3 section is oxic, with the 

exception of beds 109, 110, 111, 116, and 123 (Fig. II-6). Using the criteria of Hoffman et al. 

(1998), Averbuch et al. (2005), and Algeo and Maynard (2004), the entire section is anoxic.  

In the case of the Pho Han Formation, V/(V+Ni) is possibly a better redox proxy than 

V/Cr because V and Ni are better preserved under anaerobic depositional conditions (Hatch 

and Leventhal, 1992). According to Hatch and Leventhal (1992), V/(V+Ni) ratios ≤0.46 

represent oxic conditions, >0.46 and ≤0.60 represent dysoxic conditions, >0.54 and ≤0.82 

represent suboxic to anoxic conditions, and >0.84 represents euxinia. All Pho Han beds 

have V/(V+Ni) values equal to or greater than 0.5., indicating prolonged dysoxia at a 
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minimum. A majority of the beds are suboxic to anoxic, and beds 104, 115a, 124, and 126 

are considered euxinic.  

Given the somewhat contradictory results from V ratios, concurrent enrichments in U, 

V, Mo, S and TOC may be better indicators of anoxia and euxinia. Correlated enrichments in 

these elements indicate euxinic conditions, because under reducing conditions these ions 

form insoluble precipitates or are adsorbed onto organic material (Hoffman et al., 1998; 

Tribovillard et al., 2006). This coupling is seen only in Pho Han beds 116-118 (Figs. II-4, II-

5), which are within the expected Hangenberg interval. Co, Sb, and Tl can also be used as 

redox proxies (Brumsack, 2006; Piper and Calvert, 2009), but only Tl is not lithologically 

controlled. Beds 118-120 likewise display relative enrichments in Co and Sb, although 

trends are inconsistent (Fig. II-6). These proxies should be analyzed with caution and must 

be used alongside other methods like framboid analysis and PCA (see sections 4.2-4.3).  

 

4.1.3. Productivity proxies 

Phosphorous is commonly used as a paleoproductivity proxy to indicate increased 

biological productivity, necromass deposition, or secondary eutrophication (Middelburg and 

Levin, 2009; Schmitz et al., 1997; Tribovillard et al., 2006). In the beds from the Pho Han 

Formation, P2O5/Al2O3 increases within the expected Hangenberg interval, especially in 

beds 118 and 119 (Fig. II-7). Although Tribovillard et al. (2006) note that Ba enrichments are 

rarely affected by detrital provenance, anoxic depositional environments and the degree of 

sulfate reduction can lead to dissolution or undersaturation of barite (McKay and Pedersen, 

2008). Furthermore, Ba can vary with water depth, and barite preservation can also vary 

with sedimentation rates (Dymond et al., 1992; McKay and Pedersen, 2008). Although 

excess Ba increases in the expected Hangenberg Crisis interval in the Pho Han sediments 

(Fig. II-7), it is probably an unreliable paleoproxy due to the prolonged suboxic/dysoxic 
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depositional environment. Nickel (Ni) and cadmium (Cd) can also be used as proxies for 

either anoxia or productivity (Brumsack, 2006; Tribovillard et al., 2006). When V/Ni ratios are 

>2.5, Ni enrichments indicate bottom water anoxia (Piper and Calvert, 2009), but only half of 

the analyzed Pho Han beds (beds 104-106, 108, 109, 112, 114, 115a, 118, 124-126) have 

V/Ni ratios >2.5. Cd and Ni are enriched within the expected Hangenberg Crisis interval 

within Pho Han sediments (Fig. II-7), but their enrichment mechanisms are unclear. Copper 

(Cu) and zinc (Zn) are micronutrients that are enriched during necromass deposition and 

usually included as solid solution phases in pyrite (Tribovillard et al., 2006). Both Cu and Zn 

are enriched within the expected Hangenberg Crisis interval within Pho Han sediments (Fig. 

II-7), indicating, along with other proxies, an increase in productivity between beds 115c and 

121.  

 

4.2. Principal component analysis  

Due to the somewhat contradictory geochemical signals of some of the trace 

elements (particularly V, Cr, and Ni), principal component analysis (PCA) was used to clarify 

trace element enrichment and correlation between samples. PCA of major, minor, trace, and 

rare earth elements (Fig. II-8a) shows that the most variance is caused by mineralogy, with 

the largest variations in Si, Al, Fe, Mn, Ca, K, and Ti. Beds 115-117, 119-121, and 126 plot 

positive on the PCA 1 axis, indicating a lack of carbonate deposition. The rest of the beds 

are relatively enriched in Ca, indicating a carbonate-rich lithology, consistent with SEM-EDS 

observations. PCA of only trace elements reduced the influence of lithology in the analysis 

(Fig. II-8b). Positive values on the PCA 1 axis display relative enrichment in Mo, Cu, Ni, As, 

Co, Ce, La, excess SiO2, and excess Ba. Samples that are positive on the PCA 1 axis are 

beds 113, 116-121, and 124, which is consistent with the expected location of the 

Hangenberg Event for beds 116-121. The PCA 2 axis has little redox/productivity 
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significance (most variation in rare earth elements rather than commonly-used redox 

proxies) and accounts for less geochemical variation than to PCA 1, so interpretations using 

this method are concentrated on PCA 1.  

 

4.3 Framboidal pyrite  

Circular aggregates of pyrite microcrysts (pyrite framboids) and their shape, size, 

and distribution can indicate varying degrees of dysoxia, anoxia, or euxinia in the water 

column (Wilkin et al., 1996). Framboids that formed in anoxic water columns tend to have a 

narrow size range, with individual framboids <5 μm in diameter, and are dispersed uniformly 

throughout the sediment rather than in large clumps or within burrows (Bond et al., 2004; 

Wang et al., 2013; Wignall and Newton, 1998; Wilkin and Barnes, 1997; Wilkin et al., 1996; 

Wilkin et al., 1997). Framboids in fluctuating dysoxic/oxic/anoxic/suboxic environments are 

typically larger and more variable in size, and less abundant (Wignall and Newton, 1998). A 

lack of framboids usually indicates oxic conditions, but can also be explained by euxinic 

depositional environments where the amount of available Fe is insufficient to form framboids 

(Wilkin and Barnes, 1997). Framboids that are found in burrows or pore spaces, as well as 

ovoid-shaped framboids that are >25 μm in diameter likely formed at or below the sediment-

water interface and do not indicate water column anoxia (Carmichael et al., 2016; Rowan et 

al., 2009; Wang et al., 2013). Histogram shapes of the size distribution of framboids (Fig. II-

9) also provide useful information about the degree of water column anoxia (Wignall and 

Newton, 1998). 

Framboidal pyrite is abundant in all analyzed samples from the Cat Co Beach 3 

section, and these framboids are generally very small (<10 μm). Eight representative 

samples (beds 104, 110, 115, 116, 117, 118, 121, 124, and 126) were analyzed in detail for 

pyrite framboid size distributions (Fig. II-10). Generally, framboid size is skewed to the right, 
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with most measured framboid diameters between 4 and 5 μm. Framboid sizes < 3.5 μm 

could not be accurately measured at the resolution used for the image processing and are 

not included in this analysis. Beds 116 and 117 have an order of magnitude more framboids 

than the surrounding beds, as shown by the first column of histograms in Figure II-9, which 

also explains their elevated sulfur content (Fig. II-4). The average framboid sizes in beds 

116 and 117 are 4.56 μm and 4.26 μm, respectively, indicating deposition within anoxic to 

euxinic water conditions. Histogram shape comparisons between individual beds (Fig. II-10) 

and previous studies (Fig. II-9) suggest that the lower part of the section (beds 104, 110, 

and 115) ranges from intermittently dysoxic to upper dysoxic signatures, beds 116 and 117 

match with anoxic to euxinic signatures, and the upper part of the section (beds 121, 124, 

and 126) matches with the upper dysoxic histogram shape.   

All analyzed samples within beds 104-126 contain disseminated framboids, and the 

presence of even a small number of disseminated framboids reveals that the basin 

remained at least dysoxic throughout most of its history. This interpretation is consistent with 

redox proxies such as V/(V+Ni) and Ce anomalies that also show persistent, long-term 

dysoxic conditions within the basin. The exception to this is beds 116 and 117, which 

(regardless of proxy) exhibit highly anoxic to euxinic conditions, and are within the expected 

biostratigraphic location of the Hangenberg Crisis.     

 

4.4 Hg chemostratigraphy 

Mercury (Hg) chemostratigraphy can be useful for correlating sediments with 

volcanic events, as volcanism is the largest natural source of Hg, and Hg has a relatively 

long residence time in the atmosphere (0.5 - 2 years) that allows for wide distribution in the 

sedimentary record (Thibodeu et al., 2016; Bergquist, 2017; Charbonnier et al., 2017; 

Percival et al., 2017; Racki et al., 2018). Positive mercury anomalies have therefore been 
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linked to large-scale volcanism (Bergquist, 2017; Percival et al., 2017). Within the Pho Han 

sediments surrounding the D-C boundary, a marked Hg enrichment exceeding 1000 ppb is 

present that corresponds with the Hangenberg Event (Fig. II-4). As Hg can be correlated 

with organic matter rather than volcanic sources, Hg/TOC values were calculated as well 

(Table II-1). The interval of elevated Hg in the Pho Han Formation does correspond to some 

lithologies with higher organic content, but not all. Using the methodology of Racki et al. 

(2018), Hg/TOC anomalies exceeding 3x the median Hg/TOC values for the section are 

categorized as volcanic in source. These anomalies are present in beds 112 (3.2x the 

median) and 118 (23.6x the median) of the Pho Han Formation (Table II-2), suggesting that 

the source of Hg in those intervals is volcanic. Additional intervals (beds 116-118) also have 

elevated Hg/TOC values that correspond neatly with the Hangenberg Crisis and D-C 

transition. Very high or low TOC values can result in anomalously low/high Hg/TOC ratios, 

so caution must be exercised when interpreting this data. For this reason, Hg is also 

normalized to Al, Fe, and S.  

To reduce the signature of potential detrital or local volcaniclastic source material, 

Hg/Al2O3 values were calculated (Table II-2) (see Fig. II-11 for Hg/Al), resulting in an 

excursion near the Hangenberg Crisis and D-C boundary interval. Due to low detrital 

influence, the Hg was probably sourced from atmospheric deposition. Hg was also 

normalized to Fe and S (to minimize effects of inclusion in pyrite), resulting in a similar 

excursion, particularly in bed 118 (Fig. II-11).  

The most pronounced Hg anomaly is observed in bed 118, contrasting the strata 

recording the most severe anoxia and inferred Hangenberg Crisis (beds 116 and 117). A 

potential explanation is up-section migration via dissolution and reprecipitation reactions. 

This can occur when sediments deposited under anoxic conditions are overlain by 

sediments deposited under oxic conditions (Smit et al., 2016). This upward mobility of Hg 
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means that the potential volcanic activity and the Hangenberg Crisis may have occurred 

concurrently. To further confirm the volcanic source, terrestrial sediments from the D-C 

transition may be analyzed, which would be independent of ocean redox conditions and 

marine Hg cycling (Percival et al., 2017), or Hg isotopes can be used (Thibodeau and 

Bergquist, 2017). 
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5. Implications and Conclusions 

The Hangenberg Crisis has primarily been studied along active margins of large 

continental blocks of Laurussia and northern Gondwana, so it is important to determine in 

what ways the event is preserved in different paleogeographic locations. Using a multi-proxy 

approach, this study shows that the Hangenberg Crisis can be more narrowly constrained 

within a section with relatively limited biostratigraphic control. Although anoxia and 

productivity proxies are not always reliable, they are useful for identifying anoxia events 

when used in conjunction with PCA and pyrite framboid distributions. In the Pho Han 

Formation, the basin was not fully oxygenated even before and after the Hangenberg Crisis. 

During the Hangenberg Crisis (which likely represents a total shutdown of the carbonate 

factory), the normally dysoxic to anoxic water column likely became euxinic.  

Hg enrichment at/near the Hangenberg Crisis interval suggests that the trigger 

mechanism for the Hangenberg Crisis and the associated D-C boundary extinction event 

may have been widespread volcanic activity. Additional Hg isotope data will be helpful in 

confirming the source of the Hg, but as there is no local source of Hg for these sediments, 

the presence of Hg anomalies in a sediment-starved, passive margin carbonate basin is 

particularly notable. Although there is no single LIP that is associated with the Hangenberg 

Crisis (Bond and Wignall, 2014), the recent work by Racki et al. (2018) suggests the Hg 

anomalies at the Frasnian-Famennian boundary were due to widespread arc volcanism 

associated with the Appalachian/Variscan orogeny rather than a LIP event. As this orogenic 

event was ongoing throughout the Devonian and Carboniferous, it seems reasonable to 

explore the possibility that the Hangenberg Crisis was also triggered by similarly intensive 

arc volcanism. 
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Tables: Table II-1. Values of all bulk and trace elements measured in this study. Sample names begin with “VN-.” 

Analyte Symbol SiO2 Al2O3 Fe2O3(T) MnO MgO CaO Na2O K2O TiO2 P2O5 LOI Total Mass 
Unit Symbol % % % % % % % % % % % % g 
Detection Limit 0.01 0.01 0.01 0.001 0.01 0.01 0.01 0.01 0.001 0.01  0.01  

VN-104 1.07 0.37 0.29 0.107 0.63 53.78 0.07 0.09 0.016 0.03 42.84 99.31 1.185 
VN-105  0.85 0.26 0.25 0.08 0.72 55.41 0.08 0.04 0.004 0.03 41.32 99.04 1.346 
VN-106  0.86 0.3 0.21 0.073 0.74 54.41 0.07 0.06 0.005 0.04 42.66 99.44 1.214 
VN-108  0.71 0.18 0.13 0.093 0.67 54.2 0.06 0.03 0.002 0.04 43.03 99.13 1.451 
VN-109  0.75 0.16 0.15 0.084 0.61 55.27 0.05 0.03 0.003 0.02 43.12 100.2 1.359 
VN-110  0.61 0.13 0.12 0.148 0.6 55.11 0.04 0.03 0.004 0.03 43.16 99.99 1.383 
VN-111  0.86 0.19 0.27 0.142 0.67 55.08 0.07 0.03 0.003 0.04 42.76 100.1 1.479 
VN-112 0.89 0.25 0.2 0.067 0.59 54.2 0.03 0.05 0.006 0.04 43.28 99.6 1.035 
VN-113  1.55 0.68 0.43 0.076 1.65 52.99 0.05 0.15 0.018 0.04 42.91 100.5 1.446 
VN-114  0.96 0.25 0.22 0.102 1.2 53.35 0.04 0.06 0.006 0.04 42.79 99.02 1.503 
VN-115  2.05 0.89 0.33 0.047 0.76 52.09 0.36 0.17 0.041 0.03 42.29 99.07 0.779 
VN-115A 0.67 0.17 0.17 0.075 0.62 54.84 0.04 0.03 0.005 0.03 43.45 100.1 0.947 
VN-116  5.86 2.29 2.06 0.025 0.9 45.13 0.13 0.58 0.127 0.19 41.36 98.66 0.5841 
VN-117  5.3 1.91 1.73 0.029 0.9 47.82 0.41 0.48 0.057 0.38 39.5 98.52 0.7092 
VN-118  0.86 0.2 0.26 0.026 0.81 54.23 0.05 0.04 0.004 0.09 42.64 99.21 1.4 
VN-119  1.14 0.42 0.42 0.027 0.79 53.96 0.04 0.1 0.015 0.13 42.46 99.49 1.459 
VN-120  2.63 1.01 0.6 0.027 0.62 52.08 0.06 0.25 0.045 0.07 42.32 99.71 1.249 
VN-121  5.24 1.58 0.86 0.028 0.69 49.97 0.04 0.42 0.067 0.04 40.2 99.14 1.387 
VN-122 1.475 0.48 0.54 0.052 0.64 53.445 0.095 0.12 0.021 0.05 42.54 78.19 0.7825 
VN-123  1.26 0.23 0.21 0.046 0.65 54.34 0.04 0.06 0.006 0.03 42.9 99.77 1.375 
VN-124  1.65 0.45 0.16 0.033 0.55 53.9 0.07 0.1 0.006 0.04 42.53 99.5 1.357 
VN-125  1.34 0.24 0.18 0.036 0.59 54.92 0.03 0.06 0.006 0.03 42.77 100.2 1.445 
VN-126 2.345 0.805 0.205 0.028 0.58 52.965 0.215 0.185 0.011 0.095 42.34 99.775 0.87695 



46 
 

 

Analyte Symbol Au Ag As Ba Br Cd Co Cr Cs Cu Hg In Ir Mo Ni 
Unit Symbol ppb ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppb ppm ppm 
Detection Limit 1 0.5 1 1 0.5 0.5 0.1 0.5 0.1 1 1 0.1 1 2 1 

VN-104 < 1 < 0.5 3 7 < 0.5 < 0.5 1 14.8 < 0.2 13 < 1  < 1 < 2 4 
VN-105  4 < 0.5 1 7 < 0.5 < 0.5 < 0.1 6.1 0.3 4 < 1 < 0.1 < 1 < 2 5 
VN-106  < 1 < 0.5 3 8 < 0.5 0.6 1.2 13.7 0.3 6 < 1 < 0.1 < 1 < 2 6 
VN-108  2 < 0.5 2 6 0.9 0.7 < 0.1 3.8 0.2 6 < 1 < 0.1 < 1 < 2 4 
VN-109  < 1 < 0.5 2 6 < 0.5 < 0.5 < 0.1 1.9 0.3 2 < 1 < 0.1 < 1 < 2 4 
VN-110  < 1 < 0.5 1 6 0.5 < 0.5 0.9 1.3 0.3 3 < 1 < 0.1 < 1 < 2 5 
VN-111  < 1 < 0.5 3 7 0.9 < 0.5 1.1 1.7 0.3 10 < 1 < 0.1 < 1 < 2 7 
VN-112 < 1 < 0.5 1 7 1.2 < 0.5 0.9 < 0.5 < 0.2 2 < 1  < 1 < 2 5 
VN-113  < 1 < 0.5 5 10 1 1 3.8 15.3 0.5 13 < 1 < 0.1 < 1 < 2 21 
VN-114  < 1 < 0.5 3 7 < 0.5 < 0.5 1.1 4.5 0.3 7 < 1 < 0.1 < 1 < 2 6 
VN-115  < 1 < 0.5 2 7 0.8 < 0.5 0.8 7 < 0.2 7 < 1  8 < 2 7 
VN-115A < 1 < 0.5 2 5 1.2 < 0.5 < 0.1 5 < 0.2 2 < 1  < 1 < 2 2 
VN-116  29 < 0.5 17 22 7.3 1.7 8.6 23 < 0.2 48 < 1  29 123 58 
VN-117  3 < 0.5 17 18 6.2 0.8 7.8 13.2 < 0.2 47 < 1  3 44 32 
VN-118  3 < 0.5 2 7 2.1 < 0.5 0.8 3.9 0.3 10 < 1 < 0.1 < 1 4 5 
VN-119  < 1 < 0.5 6 9 1.1 0.6 2.4 7.8 0.4 14 < 1 < 0.1 < 1 9 14 
VN-120  9 < 0.5 8 13 < 0.5 0.8 3.5 17.9 0.7 22 < 1 < 0.1 < 1 3 33 
VN-121  < 1 < 0.5 10 18 1.3 0.6 6.3 23.2 1.1 25 < 1 < 0.1 < 1 5 35 
VN-122 15.5 < 0.5 3.5 7.5 2.15 < 0.5 3.6 4.1 < 0.2 7.5 < 1  < 1 < 2 6 
VN-123  < 1 < 0.5 3 7 1.6 < 0.5 1.5 1.7 0.3 3 < 1 < 0.1 < 1 < 2 6 
VN-124  3 < 0.5 3 8 1.3 < 0.5 < 0.1 6 0.5 3 < 1 < 0.1 < 1 3 5 
VN-125  < 1 < 0.5 2 7 0.9 < 0.5 1.2 4.5 0.3 3 < 1 < 0.1 < 1 < 2 4 
VN-126 < 1 < 0.5 1.5 7 1.65 < 0.5 1.55 10.25 < 0.2 3.5 < 1  12.5 < 2 3.5 
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Analyte Symbol Pb Rb S Sb Sc Se Sn Ta U W Y Zn Zr Ce Pr 
Unit Symbol ppm ppm % ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm 
Detection Limit 5 1 0.001 0.1 0.01 0.5 1 0.01 0.01 1 1 1 1 0.05 0.01 

VN-104 < 5 < 10 0.068 0.4 1.42 < 0.5  < 0.3 1.1 < 1 23 20 8 14  
VN-105  < 5 2 0.039 0.3 3.2 < 0.5 < 1 0.27 1.6 < 1 21 13 4 27.3 5.09 
VN-106  < 5 2 0.085 0.2 4 < 0.5 < 1 0.3 0.89 < 1 15 10 4 8.25 2.04 
VN-108  < 5 1 0.032 0.1 0.64 < 0.5 1 0.27 0.74 < 1 9 39 4 4.54 0.97 
VN-109  < 5 1 0.038 0.2 0.43 < 0.5 < 1 0.3 0.8 < 1 9 11 4 4.47 0.99 
VN-110  < 5 1 0.053 0.3 0.58 < 0.5 < 1 0.29 0.64 < 1 11 12 3 6.86 1.43 
VN-111  < 5 1 0.098 0.3 0.46 < 0.5 < 1 0.25 0.85 < 1 7 46 4 4.41 0.83 
VN-112 < 5 < 10 0.071 0.1 1.22 < 0.5  < 0.3 1.4 < 1 19 33 5 8  
VN-113  < 5 5 0.119 0.6 2.37 < 0.5 < 1 0.27 1.51 < 1 18 34 6 12.6 2.85 
VN-114  < 5 2 0.164 0.4 0.87 < 0.5 < 1 0.35 1.07 < 1 8 13 4 5.11 1.19 
VN-115  < 5 < 10 0.077 0.3 0.45 < 0.5  < 0.3 3.3 7 9 9 191 8  
VN-115A < 5 < 10 0.029 0.1 0.53 < 0.5  < 0.3 1.4 < 1 13 7 7 4  
VN-116  10 10 1.43 1.1 2.3 < 0.5  < 0.3 21 4 23 72 81 42  
VN-117  < 5 < 10 1.62 0.8 1.75 < 0.5  < 0.3 29 1 27 39 66 43  
VN-118  < 5 2 0.18 0.3 0.51 < 0.5 < 1 0.3 8.37 < 1 8 17 4 9.68 1.21 
VN-119  < 5 3 0.344 0.7 0.92 < 0.5 < 1 0.3 7.09 < 1 12 23 7 14.6 2.34 
VN-120  < 5 8 0.374 0.9 2.46 < 0.5 < 1 0.34 4 < 1 18 47 17 15.3 2.87 
VN-121  8 15 0.648 1.3 2.51 < 0.5 < 1 0.38 4.57 < 1 16 42 16 21.1 3.23 
VN-122 < 5 < 10 0.129 0.3 0.67 < 0.5   3.95 2 10.5 10 33 8  
VN-123  < 5 2 0.092 0.1 0.47 < 0.5 < 1 0.3 2.17 < 1 6 7 4 8.45 1.02 
VN-124  < 5 4 0.08 0.3 1.54 < 0.5 5 0.22 2.76 < 1 14 11 9 29.3 7.92 
VN-125  < 5 2 0.073 0.2 0.71 < 0.5 < 1 0.29 2.73 < 1 8 9 3 12 1.39 
VN-126 < 5 < 10 0.0505 0.2 1.26 < 0.5  < 0.3 3.6 1 16.5 10.5 27 20  
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Analyte Symbol Gd Dy Tl Be V Ga Ge Sr Nb La Nd Sm Eu Tb 
Unit Symbol ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm 
Detection Limit 0.01 0.01 0.05 1 5 1 0.5 2 0.2 0.05 0.05 0.01 0.005 0.01 

VN-104    < 1 21   272  15.4 17 2.44 0.6 0.3 
VN-105  3.84 3.23 0.07 < 1 23 1 < 0.5 284 0.8 22.7 21.1 4.25 1.01 0.56 
VN-106  2.21 1.83 0.07 < 1 23 1 < 0.5 309 0.6 8.95 8.47 2.2 0.5 0.31 
VN-108  0.96 0.98 < 0.05 < 1 12 1 < 0.5 266 0.4 6.34 4.13 0.94 0.23 0.16 
VN-109  1 0.85 < 0.05 < 1 11 1 < 0.5 314 0.4 6.08 4.65 0.96 0.224 0.15 
VN-110  1.46 1.25 0.06 < 1 10 1 < 0.5 296 0.4 7.82 6.07 1.24 0.33 0.22 
VN-111  0.82 0.79 0.06 < 1 17 1 < 0.5 285 0.3 4.86 3.71 0.78 0.204 0.13 
VN-112    < 1 14   295  9.24 6 1.51 0.4 0.2 
VN-113  2.89 2.47 0.07 < 1 21 2 0.5 305 0.5 13.6 12.4 2.87 0.652 0.43 
VN-114  1.07 1.12 0.08 < 1 17 1 < 0.5 351 0.6 5.57 4.95 1.21 0.317 0.19 
VN-115     < 1 7   334  8.07 8 0.75 0.3 < 0.1 
VN-115A    < 1 15   286  5.23 2 0.68 < 0.2 < 0.1 
VN-116     < 1 116   545  33.2 24 3.65 0.8 0.3 
VN-117     < 1 41   578  36 27 3.75 0.9 0.5 
VN-118  0.8 0.75 0.22 < 1 14 < 1 < 0.5 508 0.2 9.73 4.55 0.81 0.194 0.12 
VN-119  1.63 1.37 0.46 < 1 19 1 < 0.5 515 0.4 15.6 9.5 1.7 0.336 0.24 
VN-120  2.18 2.13 0.28 < 1 50 2 < 0.5 437 1 17.3 11.3 2.02 0.448 0.34 
VN-121  2.44 2.15 0.31 < 1 64 3 < 0.5 357 1.7 17.1 12.3 2.68 0.604 0.36 
VN-122    < 1 11.5   269.5  5.665 2.5 0.885 0.1 < 0.1 
VN-123  0.86 0.75 0.11 < 1 11 < 1 < 0.5 294 0.3 4.8 4.19 1 0.216 0.13 
VN-124  9.66 13.3 0.08 < 1 28 1 0.6 358 0.6 31.8 34.5 7.07 0.895 1.82 
VN-125  1.1 0.97 0.06 < 1 16 < 1 < 0.5 245 < 0.2 7.15 5.33 1.17 0.275 0.17 
VN-126    < 1 21   310.5  11.7 14 2.22 0.45 0.4 
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Analyte Symbol Ho Er Tm Yb Lu Hf Bi Th 
Unit Symbol ppm ppm ppm ppm ppm ppm ppm ppm 
Detection Limit 0.01 0.01 0.005 0.01 0.002 0.1 0.1 0.05 

VN-104    1.01 0.2 < 0.2 < 2 0.6 
VN-105  0.61 1.71 0.242 1.44 0.211 0.2 < 0.1 1.64 
VN-106  0.36 1.03 0.146 0.88 0.127 0.2 < 0.1 0.35 
VN-108  0.19 0.53 0.082 0.53 0.072 0.2 < 0.1 0.14 
VN-109  0.17 0.52 0.075 0.46 0.073 0.1 < 0.1 0.14 
VN-110  0.26 0.73 0.095 0.53 0.075 0.2 < 0.1 0.18 
VN-111  0.15 0.43 0.064 0.39 0.057 0.2 < 0.1 0.14 
VN-112    0.7 0.12 < 0.2 < 2 0.6 
VN-113  0.46 1.28 0.175 0.98 0.141 0.2 < 0.1 0.65 
VN-114  0.21 0.55 0.078 0.5 0.081 0.1 < 0.1 0.36 
VN-115     0.65 0.05 5.5 < 2 1.2 
VN-115A    0.38 0.09 < 0.2 < 2 < 0.1 
VN-116     1.55 < 0.01 1.8 < 2 3.5 
VN-117     1.55 0.03 1.4 < 2 1.5 
VN-118  0.15 0.48 0.076 0.51 0.07 0.2 < 0.1 0.21 
VN-119  0.27 0.77 0.116 0.71 0.103 0.3 < 0.1 0.46 
VN-120  0.43 1.26 0.189 1.21 0.192 0.5 < 0.1 1.19 
VN-121  0.42 1.24 0.176 1.12 0.164 0.6 < 0.1 2.19 
VN-122    0.65 0.08 0.75 < 2 0.7 
VN-123  0.14 0.39 0.057 0.37 0.058 0.2 < 0.1 0.27 
VN-124  3.18 9.46 1.21 7.14 1.04 0.4 0.3 1.46 
VN-125  0.19 0.54 0.08 0.5 0.075 < 0.1 < 0.1 0.25 
VN-126    0.83 0.07 0.6 < 2 0.65 
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Table II-2. Hg, TOC, Al2O3, Mo data as well as Hg/TOC and Hg/Al2O3 ratios from the Pho 
Han Formation, using the methodology of Racki et al. (2018). NA = Hg not analyzed. Gray 
shading represents incalculable data. Green shading represents data points that are greater 
than three times the median value. Yellow shading represents elevated Hg values above the 
median (but less than three times the median value). The median value of Hg/TOC is 66, 
and the median value of Hg/Al2O3 is 67.  

Sample Hg (ppb) TOC (%) Al2O3 (%) Mo (ppm) Hg/TOC Hg/Al2O3 
VN06-104 18 0 0.37 4 TOC = 0 49 
VN06-2014-105  20 0.2 0.26 5 100 77 
VN06-2014-106  14 0 0.30 6 TOC = 0 47 
VN06-2014-108  NA 0 0.18 4 NA NA 
VN06-2014-109  NA 0 0.16 4 NA NA 
VN06-2014-110  NA 0.5 0.13 5 NA NA 
VN06-2014-111  NA 0 0.19 7 NA NA 
VN06-112 21 0.1 0.25 5  210 84 
VN06-2014-113  18 0.1 0.68 21 180 26 
VN06-2014-114  36 0 0.25 6 TOC = 0 144 
VN-115  19 0 0.89 7 TOC = 0 21 
VN06-115A 10 0.5 0.17 2 20 59 
VN-116  548 5.3 2.29 58 103 239 
VN-117  649 5.8 1.91 32 112 340 
VN06-2014-118  1090 0.7 0.20 5 1557 5450 
VN06-2014-119  372 4.1 0.42 14 91 886 
VN06-2014-120  132 2 1.01 33 66 131 
VN06-2014-121  30 0.8 1.58 35 40 19 
VN06-122 51 4.5 0.48 6 11 106 
VN06-2014-123  11 3.5 0.23 6 3 48 
VN06-2014-124  15 0.7 0.45 5 21 33 
VN06-2014-125  16 0.9 0.24 4 18 67 
VN06-126 13 0.2 0.81 3.5 65 16 
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Part II Figures 

 

 
 
Figure II-1. (A) Cat Ba Island in northern Vietnam. (B) Study location at Cat Co 3 beach (N 
20° 42’58, 0”, E 107° 02’54, 8”) on southern part of Cat Ba Island. Figure modified from 
Komatsu et al. (2014).  
 

 

 
Figure II-2. Paleogeographic reconstruction of the continents during the Late Devonian with 
this study’s location in red. Figure modified from Blakey (2016), using updated 
paleogeographic data for Asia from Xiao et al. (2010) and Metcalfe (2009).  
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Figure II-3. Stratigraphic column as defined in Komatsu et al. (2014). Using conodont 
biostratigraphy, the most probable location of the D-C transition is within beds 117-118. 
Uncertainty in the conodont biostratigraphic record, as described by Corradini et al. (2011), 
requires that the D-C transition is a zone (shown by hatchmarks) rather than a sharp 
boundary. 



53 
 

 

 
Figure II-4. Chemostratigraphy plots of carbon, including total organic carbon (TOC), total S, and Mo. TOC, total S, and Mo show 
enrichments immediately below the D-C boundary, in the expected location of the Hangenberg Crisis (beds 116-118, shaded).
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Figure II-5: Chemostratigraphy plots of lithologic proxies (Al2O3, SiO2, K2O, Ti/Al, Si/Al, Zr/Rb, and Al/Ti). The expected location of 
the Hangenberg Crisis (beds 116-118) is shaded. 
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Figure II-6. Chemostratigraphy plots of common redox proxies. Dashed red lines represent anoxic values of proxies. A Ce anomaly 
<-0.1 is considered anoxic, according to Wilde et al. (1996) and Morad and Felitsyn (2001). V/Cr>5 and V/(V+Ni)>0.6 is anoxic 
according to Hoffman et al. (1998). Beds 116-118 are shaded, representing the Hangbenberg Crisis interval.  
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Figure II-7. Chemostratigraphy plots of common productivity proxies, all of which display 
relative enrichments below the D-C boundary, at the expected location of the Hangenberg 
Event. Beds 116-118 are shaded, representing the Hangbenberg Crisis interval. 
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Figure II-8: (A) Principal component analysis (PCA) of all elements, including major and 
trace elements. The major elements account for the most variation within all samples (Si, Al, 
K, Ti, and Ca). The red triangles represent beds that are near the expected location of the 
Hangenberg Crisis. (B) PCA of trace elements (all major elements removed from analysis). 
The beds surrounding the expected location of the Hangenberg Crisis are relatively enriched 
in Mo, Cu, Ni, As, Co, Ce, La, excess SiO2, and excess Ba, most of which are indicative of 
anoxic depositional environments or increased productivity.  
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Figure II-9. Size distributions of framboids from depositional environments with variable 
degrees of anoxia. Histogram density functions were computed using the kernel distribution 
fit in MATLAB. Data from Wignall and Newton (1998).    
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Figure II-10. Abundance and size distribution of pyrite framboids in representative samples 
throughout the section. Framboid diameter bin size for histograms is 0.5 μm. Graphs on the 
left represent framboid distributions for all beds; graphs on the right represent framboid 
distributions for beds with >1000 framboids per cm2. 
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Figure II-11. Chemostratigraphy of volcanism proxies. Beds 116-120 all show total Hg 
above background levels, while Hg/TOC, Hg/Al, Hg/S, and Hg/Fe all show a significant spike 
at bed 118 (at the D-C boundary). Beds 116-118 are shaded, representing the Hangbenberg 
Crisis interval.  
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